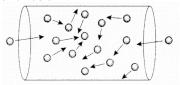
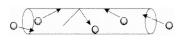

3 Transport effects in heterogeneous catalysis Overview of the system:

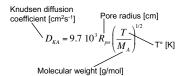


3

3 Transport effects in heterogeneous catalysis


3.3.1 Types of pores and pore networks

· Molecular diffusion

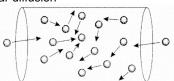


In large pores (>1000 nm for molecules ~100 g/mol), molecules will hit themselves much more than the wall (=bulk diffusion)

Knudsen diffusion

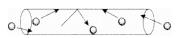
In smaller pores (5<R $_{p}<1000$ nm for molecules ~100 g/mol), molecules will increasingly hit the wall more than themselves

For a gas, D_{AB} ~0.1 cm²s⁻¹. For D_{KA} to be comparable, for a molecule where M_A ~100 g/mol and T°=300 K, we need:

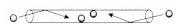

 $0.1=10^4 R_{po} (3)^{1/2} \rightarrow R_{po} \sim 10^{-5} cm = 100 nm$

^

3 Transport effects in heterogeneous catalysis


3.3.1 Types of pores and pore networks

· Molecular diffusion


In large pores (>1000 nm for molecules ~100 g/mol), molecules will hit themselves much more than the wall (=bulk diffusion)

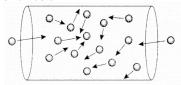
· Knudsen diffusion

In smaller pores ($5 < R_p < 1000$ nm for molecules ~100 g/mol), molecules will increasingly hit the wall more than themselves

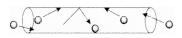
Single file diffusion

Only one molecule can pass through the pore at a time (2-5 nm, depending on the molecule)

· Shape-selective/very small pore


The pore is smaller than a molecule (< 2nm)

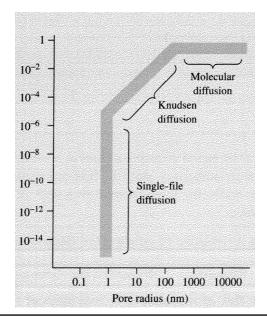
5


3 Transport effects in heterogeneous catalysis

3.3.1 Types of pores and pore networks

· Molecular diffusion

· Knudsen diffusion



• Single file diffusion

· Shape-selective/very small pore

6